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INTRODUCTION

Let B be a compact set in r, '. r;::' L Suppose /E C(B) and V to be a
finite-dimensional subset of C(B). VO E V is called a best approximation on B
to / out of V if 11/- VOII <II/- v II for all v E V. A best approximation to a
given / always exists, and it is sometimes unique. Newman and Shapiro 151
defined a quantitative notion of uniqueness (which implies uniqueness) called
strong uniqueness. Namely, ['0 is a strongly unique best approximation to/if
there exists a positive constant. y(f. B, V) such that

iIF-lii) Ii!- Vol! +Y !II - ['011 (1 )

holds for all v E V. The largest ;' such that (I) holds is called the best strong
uniqueness constant for f While many aspects of best strong uniqueness
constants have been studied. particularly in the case r = I (cf. Henry and
Swetits r4\) the best strong uniqueness constant is known explicitly only
(essentially) for the univariate Chebyshev polynomial.

The present work is devoted to obtaining the best strong uniqueness
constant for a multivariate Chebyshev polynomial. This will be accom­
plished by using the following characterization of the best strong uniqueness
constant (implicit in Bartelt and McLaughlin [I]). For g E C(B) let

E(g; B) = 1x E B: Ig(x)1 = jlgll f·
Given.fE C(B) and a /)0 E V. if

min max Rejsgn.f(x) - velx) I v(x) = y* > 0, (2)
l'EV XEE(f-l'o;Jij

,1"1'=1

then V o is a strongly unique best approximation to / on B out of V and IS

the best strong uniqueness constant for f The converse also holds.
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In the first section we collect some basic information about univariate
Chebyshev polynomials, establish our notation for multivariate polynomials,
and define the multivariate Chebyshev polynomial we shall be considering.
Then we state our result and sketch the proof. The second section is devoted
to the details of the proof.

1. STATEMENT OF RESULT

The univariate Chebyshev polynomial of degree k (k = 0, 1,2,... ) is
defined by Tk(u) = cos ke, where u = cos e, °~ e~ n. Clearly, ITk(u)! ~ 1,
-1 ~ u ~ 1, with equality holding only if

In fact,

jn
u = n~k) '= cos -

'f)' k' j= 0,1,... , k.

j= 0,1,... , k. (3 )

Furthermore, 0 is a strongly unique best approximation to Tk (k ~ 1) on
[-1, 1] out of the polynomials of degree at most k - 1, and the best strong
uniqueness constant for Tk is (2k - 1) ~] (cf. Cline [2 J).

It IS also important to recall that the Chebyshev polynomials are
orthogonal on the points l1~k) ,..., 17ikl

• This orthogonality property, in the
cases that will interest us here, is given by

\

Ia ~ b = 0,0'
k a = b = k, or

(a, b) = (0, 2k).

b = 2k - a and bothI" Ta (l1?») Tb(17~k») = !
k a"* b and (a, b)"* (0, 2k)

(4)
s=o -

2 or

a = b and a "* 0, k.

° otherwise,

where a = 0, 1,..., k, b = 0, 1,..., 2k, and the two strokes on the summation
sign mean that the first and last summands are to be halved (cf. Rivlin [7 l).

We turn now to multivariate polynomials. Let x: (x) ,... , x r ) be a point in
IFF, r ~ 1. For each index k: (k] ,... , k r ), the k; being non-negative integers, we
put Ikl = k] + ... + k r • Suppose we are given n: (n l , ... , nr ), n"* O. Let V be
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the real linear space spanned by Xi :=X;, ... X;, where 0 ~ ij ~ nj,j = I, .... r

and i =1= n. That is, V consists of all polynomials

vex) = ~ ajx i
.

0< h;;' n
;:i;.n

Note that the dimension of V is (n I + I) ... (n r + 1) - I. and that if we put

then {Ti(x)} with 0 ~ i ~ nand i =1= n also forms a basis for V. It is known
(Ehlich and Zeller [31 and Reimer 16]) that va = 0 is the unique best approx­
imation on r:= I-I, I r to Tn(x) out of V (a fact which follows from our
result). We shall show that the best strong uniqueness constant for T n(x) is

r I

Y*(Til' r, V) = (l' I I ni -- I )
. {I

(5 )

In case r = I we thus recover the previously mentioned result of Cline.
The proof uses (2), with f = Tn' Va = 0 and B = 1'. The set E(Tn:1')

consist of all points T1j: ('lj~') ,... , 'It,J) with 0 ~ j ~ n and so we are required
to show (in view of (3)) that

r I

,?j~ O~ja<;xn Tn(T1j) V(T1j) = (1' }J ni - I) =: k

1I11i- J
(6)

This we propose to accomplish in two parts. First we shall show that the
maximum in (6) cannot be less than A for any v satisfying Ikll = 1. Then we
exhibit a v, with II v 11= L such that the maximum in (6) does not exceed ),.

2. THE PROOF OF (5)

It suffices to establish (6).

(i) Suppose that

all j, 0 ~ j ~ n, (7)

for some v E V satisfying Ilull = 1. Then for p(x) = A- Tn(x) vex) we have

all j, 0 ~j ~ n. (8)
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Now, if D= {i:O~i~n,i*"n},then we may write

vex) = I AjTlx)
iED

and

Tn(x) vex) = L AjT;(x) Tn(x).
iED

59

(9)

(10)

If we recall the identity TAu) Tb(u) = 1(Ta+b(u) + T1b_al(U», then for i E D

,
Ti(x) Tn(x) = 2-, n (Tn,+is(Xs ) + Tn,-i,(Xs»

5=1

-2-' \' T()- ~ c" "x,
"E.1(i)

where the set of indices A(i) and the multiplicities c" have the following
properties: A(i) = {«n l ± i\),..., (n, ± i,))} where all possible sign sequences
are taken on. Thus if exactly I (I = 0,... , r) of the components of i are zero,
then A(i) consists of 2'-1 distinct indices and c'" = 21 for ~ E A(i).

Hence if

then

Tn(x) vex) = L B~T,.(x),
~EII

,1= U A(i)
iED

(11 )

and in view of (10), if ~ E A(i) and exactly I (l = 0, 1,..., r) components of i
are zero

(12)

Thus

p(x) = L fl"Tix)
~Ello

where ,10 = AU {Of, flo = A and fl", = -B~, ~ *" O.
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We are next going to bound the fJ~, hence the A i' by utilizing the
orthogonality property (4), and the bounds obtained will contradict the
hypothesis that Ii v II = I. Suppose that 0 ~ v ~ n. then

TJ1lj)P(1l) = \ ' fJ~TJll) T~(llj)
!J.Ejo

for all j satisfying 0 ~j ~ n. Thus

II,

\ 'If I J T. (1]InmJ)p(n)
I m.l m "1./

\n~If •.. \"~" lr
l

I I I J
T,)'l/::") T"",('l/::")· (13)

oil 0 i r () m I

If we now apply (4) consecutively with a = I'm' b = ,U m, S = Jm and
k = nm , m = 1,.." r to the expression at the end of the chain of equalities in
(13), and think of v(O ~ v ~ n) as fixed, we obtain the following results:

Let R = p,oo., r} and R k be the set of all distinct k-tuples of integers in R,

k = O,oo.,r (R o= 0). Suppose 0 ~ v ~ n, 0 *' v and for k E {D, Loo, r f and
some fixed rk E Rk

O<l'm<n",;mER\rk' ( 14)

Then, in view of the definition of P and (8) we have

r

~ \'If P(ll)=A It nm - ylf Tn(llj) V(ll) =A II 11 m , (15)
O(j<n m I O<j(n m I

(The fact that

\ 'If Tn(llj) V(ll) = 0
O",;j"';n

follows from (4) since i *' n in (10).) Now for v*,O satisfying (14) and
!!EL1(n-v)

_ _ B _ A n __ •

fJp. - ~ - 2'-1
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and J(n - v) consists of 21'-1 indices. Thus

I L /3J! I = IAn_vi,
J!ELl(n- v)

and we conclude from (15) that

IAn~vl<2r
-

k A

61

(16)

for all v =f- 0 satisfying (14). For each k = 0, I,... , r, (16) provides an upper
bound on

2k I 11 (n m - I)
rkERk rnER\rk

(17)

distinct coefficients of v, except that when k = r we must subtract I
(obtaining 2 r - 1) since v =f- 0 (or i =f- n).

Note that when k = r and v = n

I I" T/llj)P(l1j) I= I '\'" (-I)Jj1p(1l) I < 2:" p(t'/j)
.O<j(n O(j<n O(j<n

since Ijl cannot be even (or odd) for all 0 <j < n, and (15) informs us that
strict inequality holds in (16), i.e.,

(18)

If we also observe that {v: 0 < v < n, v =f- O} is in one-to-one correspondence
with {i:O<i<n,i=f-n}=D, then (9), (16), (17), and (18) imply that

It is easy to evaluate Cr' Namely, let Ym = nm- I, m = 1,... , r, and consider
the polynomial

m=O

where 0"0 = I and 0"1, ... ,0"m are the elementary symmetric functions of
Y1' ... ,Yr • Then

r

Cr =2'(-IYt(-I)-I=2' n nm-l=,l,-I. (20)
m=l
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Equations (20) and (19) yield II v II < 1, a contradiction. Inequality (7) cannot
hold for any v E V with II v II = I and so

all v E V, II v II = l. (21 )

(ii) We shall prove that (6) holds by exhibiting a v of norm one for
which equality holds in (21). Namely,

= (y ~" Tj(X)) ~ Tn(x)
O<i~ n

clearly satisfies wE V, !I wll = A I

But if we put

k

()
'\. 'II T ( )qk U = _ s U •
S~O

then for a = 0, I,... , k

q (n(kl) = ~'II T (lI(kl) = ~," T ( (k)) = \ k.
k'in _ s n _ II lis 10

5",:0 S 0 ~

in view of (4). Thus, for 0";;: j ,,;;: n,

and

a=O,
otherwise,

j=O
otherwise

j=O
otherwise.

Thus v* = -AW satisfies v* E V, II v* II = 1 and

This concludes the proof.
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